The Structure of certain Chromosomes and the Mechanism of their Division.

By

Arthur Bolles Lee, Hon. F.IB.M.s.

With Plates 1 and 2.

Part I. Structure.

(a) Historical.

The first suggestion of any structure at all observable in chromosomes seems to be due to Pfitzner ('Morph. Jahrb.', vii, 1882), who suggested that a chromosome is made up of a row of granules of chromatin embedded in an achromatic or luss chromatic thread. Belief in these grammes-later dignified by the names of 'chromomeres '. 'chromioles', and the like-long held sway, and still lingers in many minds. I do not think it necessary to enter into a detailed discussion of this view ; for I think it is now indubitable that the supposed granules are nothing but the misinterpreterl images of twists of the chromosome, or of bulges in it. The figures illustrating this papor afford abundant instances of bulges caused by twists of the chromosomes ; and those illustrating my paper on the chromosomes of Paris quadrifolia (La Cellule . xxviii, 2. 1912, p. 265) of bulges caused by alreoles in them ; either of which, if indistinctly seen, may lend themselves to an erroneous interpretation as granules. ${ }^{1}$

At the present time two other theories are in the field: the chromonema theory, and the alreolation theorr.

[^0]The chromontematheory conceives of the chromosumbe an compusen (at halst at a certain stage) of a continuous filifom chmmatic doment-oftens spinally coiled-supportod on :m anthomat ic core, on contamed in an achromatic cylindrical matriv.

This potion is due to Baranteky, who in 1880 (Bot. Y, "tmer, p. 211) described and figned, in the pollen mothercells of Tralleseantia virginica, a fine chromatic fibre spiratly coiled, at the surface of the chromosomes, round an achematic corre.

In 1901 Janssens ('La Crallule', t. xix, pp. 55 and 58) described similar chromatic spirals uncoiling themselves from the chromatin chmps of the resting spermatogonia of the newt, and cern figured similar filaments coiled within the chromosomes of the telophasise, closely applied to an enveloping membrane. Later (La C'ellule ' , t. xxii, 1905, p. 413 and figs. 42 to 50 and 52 to 5i5) he figured achromatic membranes clearly existing around the "pachytane' chromosomes of the anxocytes of Batrachosppsattenuatus, and concluded that in the stages of the bouquet and the strepsinema all the chromosomes are in contact with their neighbours by means of these membranes-' les chromosomes se touchent tous '.

Bonnevic ('Arch. Zellforsch. ’, i, 1908, p. 450, and particularly pp. 471, 473, 477, 479, 509 ; ii, 1908, p. 201, and particularly pp. 266-70; ix, 1913, p. 433) from a study of chromosomes of Ascaris. Allium, and Amphiuma, deduces the following conclusions: A prophasic chromosome consists of an achromatic core on the surface of which is spread a contimuns. mantle of chromatin (I find no mention of a membrane). In the telophase this mantle becomes differentiated into a spirally coiled thread, whilst the achromatin is cast out into the new nucleus. The spiral threads of chromatin then put forth lateral processes which anastomose with those of neighbouring threads, and so form a nuclear network. At the next prophase the anastomeses are withdrawn, the chromatin threads shorten and thickem, and differentiate into chromosomes showing a ncwly formedachromatic core with a continuous mantle of
chromatin derived from the persisting chromatin of the telophasic spirals. These spirals are therefore the rudiments of a new generation of chromosomes.
K. C. Sichneider (' Festschr. f. R. Hertwig ', i, 1910, p. 215) also describes the chromosomes of the anaphase as consisting of a chromatic spiral enveloping an achromatic core: but finds this spiral hecome double in the telophase. He does not find in the quiescent muclens a network formed by anastomosing processes of the spirals, but only a tangle formed by the attenuatet and elongated spirals themselres. But these spirals are differentiated into chromatic granules united by an (apparently) achromatic thread. The prophasic chromosomes are formed by the condensation of the granules into (two) new chromatic spirals enveloping this thread.

Vejdovsky ('Zum Problem der Tererbungsträger ', Prag, 1912) also finds that a 'ripe' chromosome consists of an achromatic core round which is wound a chromatic fibre. To this fibre he gives the name of 'chromonema'. He finds no membrane. At the telophase, the achromatic core is cast out, and, swelling, forms the nuclear enchylema. But the chromnnema differentiates into a new achromatic thread with chromatic granules (' chromioles ') imbedded in it. The threads thus constituted anastomose into the network of the quiescent nucleus. At the prophase the anastomoses are withdram, and the chromioles fuse into a new continuous chromonema, spirally coiled round the persisting threads. In the later prophase the chromonema segments into 'chromomeres ' which undergo bipartition, and so bring about the division of the chromosomes. So that Tejdorsky, though a supporter of the chromonema theory in so far as he recognizes the chromatic thread as a chief constituent of the chromosome, does not entirely discard the granule theory of Balbiani and Pfitzner. Like Bomnerie, he concrives of the chromonemas as the moliments (Anlagen) of a new generation of chromosomes (op. cit., p. 171, et passim).

The alveolation theory was foreshadowed by some observations of ran Beneden's, but has only been worked up

 : and whew paters hy hamself and his pupils). According to this,
 the telophasi homexcomber with numerous racuoles or alveoles, Which end ly aplitting each of them up into a mere network of clmonnatin. 'These netwerks then anastomose by lateral pro-
 feticulan of the ghiescent macleus. At the next prophase the ana-tonnoses arr drawn ins and homogeneons chromosomes are fonment anew from the remaning reticular tracks by the oblitaration of their alreoles and condensation of their honeycombeal chromatin into a homogeneons thread.

I lav゚ロ aluadry (Jat Cellule ', xxviii, 1913, p. 265) published a study of the essential points at issue between Grégoire and Bonnorir, as exemplified in the pollengrains of Paris quadrifulia. J there fomnd the chromosomes to be alveolated as describerl hy (irégoire; hut I did not find their alveolation to progress in the telophasic chromosomes to the point of hreaking them n pinto net works. On the contrary, I found their alvooles 10 disitplesalrat and the chromosomes to condense into 1hin spiral throads. But I did not find these threads to anaStomose into a metwork in the resting nuclens, as described by
 lont only a 1 anglo of the much elongated and atiemated spiral chomonsomes. I fomel these persisting thronghont the interflasis. and at the next prophase forming typical chomosomes liy shomanmis and thickening and at the same time agam

[^1]chromosomes honeycombed by easily perceptible alseoles, of the existence of which there cau be no doubt. For a detailed description of the characters of these alveoles, the reater will do well to refer to the paper quoted. Fig. 2, which is a slightly corrected copy of fig. $13^{\text {his }}$ of the same paper, shows thee solid spiral threads into which these alveolated chromosomes become transformed during the telophase.

Later, I have extended this study to the chromosomes of the nuclei of the pollen cells and of some tissues of Lilium croceum and L. wartatgon, and obtained exactly the samo results. Combining these results with those of Grégoire and Wygaerts for 'Trillium orandiflorum and 'T. ceruubm, of Grégoire for Allium cepa, A. ascoalonicum, and A. porrum, and of Sharp ('Lat Cellule', xxix, 1913, p. 297) for Vicia fabia, and rejecting as erroneous the statements of those writers who have deseribed in plant chromosomes at spiral fibre instead of alveoles, ${ }^{1}$ we find that all the plant chromosomes that have beell successfully studied hitherto possess an alveolated structure in the prophases, equatorial phasess, and anapliases.

The present paper deals with certain a n i i mal I chronosomes. Only one recent writer, Kow alski, has deseribed any of these as alveolated. Kowalski ('Lai ('ellule', xxi, 1904, p. 34!)), studying divers muclei of the larval Salamander, amived at the conclusion that their chromosomes all conform to the atheolation theory. I have catefully examined all the chromosomes studied by Kowalski, and many other of the Salamader larva,
somes; and that if this spiral cammot be made ont with certainty (1 think I sometimes eatch glimpes of it), it is becatuse the image of it is obsemeel by that of the walls of the alveoles. But this, if it exists, is certainly not the spirally eoiled thread deseribed by Bonnevie. I intend to return to this point in another paper.
${ }^{1}$ Bara ueeki's observations may safely be rejected, becanse they have been eontrolled by (Garnoy and bystrasburger, whodidnot find the alleged tibre; and those of Bonncvieondllium, beramse they are rontradicted by the everyday experience ol botanical eytologists. Both thene writers have apparently misinterpreted images of walls of atooters of of torsions of the whole chomosome, ats images of a spiral tibre.
and find that mether these nor any other of the amimal chro－ mosmues that I hate stadied duso ；but that on the contrary， at one perioet of their existence，they all do possess a cer－ tain spiral diffentiation answring，to some extent，to じゃjdorisky＇s＇chomomema＇．Thw following pages set forth the widence for this．but will，ats I think，also show that the adrocates of the chromonema theory have pushed it too far； for the spiral differentiation in question does not constitute an inderpentent fibre and does not form the germ of a new chromosime．

The chromosomes described are chiefly those of prophases， c＇puatorial phases，anaphases＇s，and telophases；but I have tonched on thoss of some interphases in which certain of their characters are demonstrable．I do not attempt in this paper to describe the maclein elements of completely＇resting＇nuclei． The results set forth are based on the study of chromosomes of the Amphibia（chiefly Urodela）．Careful investigation of the muclei of the other classes of the Vertebrata has shown that their chromosomes，though conforming apparently in all respects with those of the Amphibia，are mostly too small to afford trust－ werthy images of the details in question．The same is the case with most of the Invertebrata，only certain nuclei of the Ortho－ ptera being found to possess chromosomes which，though smaller than most of those of the Amphibia，yet afford images which are often clearer．The majority of the figures are of chromosomes of spermatogonia，the most farourable kind for study．Those of spermatocytes and oöcytes are excluded from the survey，because in them the details are obscured by the complications due to the processes of conjugation．Most of the images described are from paraffin sections：surface prearations show nothing more than these．The most trust－ worthy fixing agent has been found to be piero－formol（Bouin＇s formula）．Iron hacmatoxylin has been found to be incomparably the best stain ；but it should not be used quite as laid down in the books＇，which give excessive times and strengths．You should mordant（sections of $7 \cdot 5$ microns，or less＇）for not more than $2 \frac{1}{2}$ minutes in a solution of iron alum of 4 per cent．or
weaker ; and stain in a half per cent. (or weaker) solution of haematoxylin till the sections appear dark gree, not black (about twenty-five minutes in a virgin solution, or not more than four in one which has already had several slides passed through it); and differentiate in the iron solution for at least a couple of minutes after the sections, examined in water, seem sufficiently extracted. For the stain ahways appears much lighter in water than in balsam. For the study of the sheath, mount in Gilson's camsal balsam or euparal, rather than in balsam.

(b) Descriptive.

It will be best to begin with the study of some chromosomes taken at the anaphase, the most favourable moment, figs. 3 to 18. ${ }^{1}$ The chromosome of fig. 6 , which may be taken as typical, is from a spermatogonium of Salamandra maculosa. It shows the following two (not three) constituents, namely a chromatic (basophilous) axis, and an 'achromatic' (i.e. acidophilous) sheath enveloping this. The chromatic axis is by far the more conspicuous of the two ; so much so that, as the sheath is seldom conspicuous enough to compel attention, the axis alone is all that is usually seen, and is therefore generally taken as the whole of the chromosome. But the sheath (which is none other than the achromatic membrane described by Janssens, 'La Cellule', xxii, 1905, p. 413 and figs. 42 to 50 and 52 to 55 , as found in the anxocytes of Batrachoseps attenuatus), though it is a difficult object on account of its great tenuity, can generally be made out in well fixed specimens.

The axis has approximately the form of a cylinder, showing a circular section. But it is not a cylinder of regular calibre, for it is generally somewhat dilated at the ends, ats seen in figs. 6, 7, 14 (and to a slighter degree in figs. 3 ami 4), thats becoming somewhat claviform. And it is generally notably narrower at the polar bend than elsewhere, ligs. 8,4 , and

[^2] of the Plates.
(apectally 11: and at thin peint is encreally somewhat that encel. It it (and ! where not setioned by the kinife) it terminate's in a -monh donne-shatped surface, from the stmmint of which 1. Were can frequmt be sem to emerge a tiny tage the vestige of it - mime with its late sister chromosome, tigs. 6, 7, 14, 5, 12, all of which show the tag ; and 3 and 4 . It is madoubtedly anlid. not hollow. furlace views (siee the figs. yuotel) show no hument nor any trace of the alseoles found in plant chromosomes ; but they may sedm to show a border darker than the imemost fart, ats in one of two of the chromosomes of figs. 8,4 , and 5 . lint in these catsen it is gemerally possible to see that this border is mot contimons, but consists of a series of elongated dots. Transumse sections frequently show as disks with a dark honder and lighter centre fig. 15 , which may give rise to the inumersion that there exists an axial lamen. But I have satisfied myself that the axis is in reality solid, and that the dark border is clue, for the most part at least, to the periaxial spiral, ahont to be describel, showing there. It is freguently posssible, by very carceful focusing, to see that this border is darker at ote side of the disk than the other, which I take to be due (o) a sictor of the spiral being in sharpest focus there. Thes in lig. 15 at at the top left it is darker to the right ; at the top right, darker at the bottom ; and in the lowest disk darker at the top. And the darker sector can be seen to turn round the disk with "Mo change of fuens ; which is just as a spiral viewed end-wise must bellawe. similar mages are shown, more clarly, by three of the lens damly stamed chromosones of tig. 15 c . Those of lig. $15 b$ show the darker border as an apparently entire ring, not a mere sector ; and the forrth chromosome of 15 c shows ats a disk with a mere hint of a darker border.
lumther, in the lighter-columed centre of the disk there can annmetimes be sech a darker commathaped dot. One of these is soert ats it mere dot in the two upper disks of figg. 15 co , and as

[^3]a comma in the lower one. This I have no doubt is nothing but an out-of-focus portion of the periaxial spiral coming into view from a lower depth, in a somewhat tilted chromosome.

I think the utmost that can be admitted in the way of any hollowness of the axis is that this may possibly possess a cortical layer somewhat denser than the rest. But I think the appearances are sufficiently accounted for by the periaxial spiral.

On the sturace of this otherwise homogeneous cylinder there runs a spiral of somewhat denser substance than the rest, figs. 3 to 14 . This periaxial spiral is eridently somewhat denser than the rest, because it resists decoloration in regressive staining more strongly ; but it is evidently of the same composition, for its affinities for stainsarethe same. It is not something separate from the rest of the cylinder, but is continuous with it. It is not fittingly described as a fibre wound round a core: for there is no space between the spiral and the rest of the axis ; there is no hint of a discontmuity between the two either in surface views or in section. Nor should it be described as a fibre countersunk or partially embedded in the axis: for if it were a fibre its section woukd show as a small circle (or other figure) having a defimite limit all round; but these spirals only show a definite limit outside the general surface of the core; inside, they merge in its substance indistinguishably. Vejdovisky's term of chromonema' is a misnomer : the thing is not a fibre, bat a rib or ridge. It must therefore be taken to be a mere spiral condensation of the cylinder substance.

It is true that cases such as that shown in the left-hand chromosome of fig. 3 are not very infrequent. At the middle of the longer limb of this chromosome there is a break ; and the spiral is seen to bridge over the grap between the two parts. But I take it that that is only because its toughess has emablech it to resist where the rest yielded: just as when you break it twig you frequently get the two parts hanging together by a strip, of bark.

The periaxial spiral sometimes serems to course minterruptedly
the whele length of the chemenome (with the exception of the (atreme-tips). But often, ats shown in fig. 14, it seems to be intermpted at the polar bend, the bend only showing an attemateat tract of the core without any perceptible ridge on it. At the tips, the spiral crases at the base of the dome-shaped surface, and is not contimued up to its summit, figs. 6, 7, 14.

It seldom shows a regular pitch throughont, for its turns are sommemes refy widly spaced, as in figs. 6 and 7 . but often so closely approximated that they almost fonch one another, as shown at the tip of the right-hand limb of fig. 14. The drawings, in which the spacing between each turn has been reproduced with ecrupulous care, will give a better idea of this than duy description.

It has been said that the spiral shows no definite limit inside the general surface of the axis ; but outside this it does. Its optical section there shows as a series of minute conical elevations, giving, in inferior images, the appearance of a row of minute thorms. These elerations are figured in several of the drawings of recent observers, and are by their authors considered to be in effect mimete thom-like processes. But careful observation of well-p)reserved specimens (with good objectives and a first-class condenser) shows that the two outlines of each of these apparent cones do not terminate at the: apparent :ןex shown under inferior definition, but merge there into a single line which is continned outwards. generally in a perceptible curve, till it reaches the membranous sheath. And it cian oftem be seen to insert on this by means of a delicate conical enlargement. All the drawings, figs. 2 to 18, show some of these lines, and the enlargement is shown very clearly in tigh. 7 and 23 , and less clearly, but still recognizably, in seteral parts of the remaining figures. These enlargenents, then, show as a row of minute cones having their bases applied to the imer surface of the sheath, and their apices continnomwith the line which springs from the cones on the axis. There is always one of these cones on the sheath for each one on the core. Those on the sheath can often be seed to be situate, not diamedrically oprosite to those on the core, but a little higher
up or lower down, at the extremity of a line which prolongs the course taken by the spiral acros's the axis. This is shown in fig. 14; but in the remainder of the figures is not shown clearly on account of the frequent derangement of the symmetry of the disposition caused by stretching or other displacement of the sheath. But there can be no donbt that the relations of the two sets of cones are as described.

The line that joins the elevations on the axis to the sheath, including its aponeurosis thereon, is rery faint, but it can sometimes be seen to be stained. In that case, it stains in the same tone as the axis; for instance, I have obtained it unmistakably red with safranin. This ligament, then, is a prolongation of the substance of the spiral. And, taking all these facts together, we must come to the conclusion that each of these apparently filiform ligaments is nothing but the optical section of a flange-like or pterygoid membranous expansion of the spiral. This camot be seen as a membrane, full face, because it winds round the axis in such a way as always to present its edge to the observer ; and also because it is so thin (I should think anything under a twentieth of a micron) that if ever a portion of it should come to lie full face it would still be invisible through its thimess. ${ }^{1}$

We may, if we like, call the optical sections of this membrane lateral processes of the axis; which well describes the optical image. But then we must bear in mind that there is in reality only one of them, which courses contimously round the axis like the lamina spiralis cochleae round tho modiolus. And we can make a rough model of a chromosome of this type by taking a carpenter's screw and inserting it into a quill into which it will just fit.

The whole of the chromatic axis, the immermost part as well as the spiral and the lateral processes, is most decidedly basophilous: no part of it is achromatic nor acidophilous (which is what the authors quoted in the Introduction mean when

[^4]they say 'achromatic '). It stams energetically in the fresh state with aciel methyl green ; and in the fixed state it stains chergetieally and selectively with saframe, gentian violet, and the oflere ustal basic stains. The only ground that I can discower for the belief in an 'achromatic' core in it is the fact discussed above, that the periaxial spiral generally secoms more darkly staned than the rest of the eylinder round which it winds. But that does not in the least point to at difference of chematophily betwern the two. The imer part of the axis stains (gencrally) lesis darkly than the spiral because it is less dense. And that is all ; for the iwo stain, qualitatively, with catactly the same selectivity for stains.

Thesheath is a contimons tubular membrame, of a thickness of the order of about one-dwentieth of a micron. It is of irregular calibre, but roughly of a diancter of about three times that of the axis (see figs. 2 to 18 and others). It is very frequently seen to be indented where the lateral processes insert on it, as thongh it were held down at these points, but blown up between then. It is sometimes seen to be contimed round the tip, as in most of the figures given; but sometimes seems only to reach to the base of the dome-like surface, ats in tig. 14. It is aldsolutely structureless. It is decidedly a cidophilous, staining readily though somewhat feebly (to about the same dergee ats spindle fibres, for instance) with Siurefuchsin, Sïncriolett, or Lichtgrïn ; and not staining with basic dyes. The space between this membrane and the axis is filled with a substance of glassy cleamess, which is free from all trace of gramules or other differentiations, and entirely achomatic, not staming in any way. If it appear to be tinted, as it some. times may, that is due to the staining of the membrame. This substance may be liquid, or may be gelatinous.

I finel the sheath on all anaphase chromosomes of which I cian obtain sufficiently good images ; and have concluded that it is ats univeral an attribute of all chromosomes of this stage ats the axis and the periaxial spiral.
'Thesse, then, ate the features which can be detected on fatrourable specinents of anmal chromosomes at the anajphase.

We have now to inquire to what extent they are present in other phases : and this with special reference to the assertion of Bonnevic and Vejdovsky that at the telophase one part of the chromosome axis is cast out into the new karyoplasm, whilst another persists as a spirally coiled thread which forms the rudiment of the new chromosome.

At the end of the anaphase the 'daughter-star' of chromosomes contracts into a figure which is called by some the 'tassement polaire', a term which we may translate by polar clump. In this clump (figs. 29 to 34) the chromosomes become so densely crowded, and even agglutinated together, that it is impossible to follow out their minnte details with accuracy thronghout (in the Amphibia: in some other groups the case may be different). Still, enough can be seen in suitably fixed clumps, such as those of figs. 30 and 31 , to warrant the assertion that the essential features of the chromosomes persist. In fig. 30, for instance, the chromosome axes can in many places be made out, appearing as thin threads (therefore considerably shrmoken) collocated in pairs (an important detail, the discussion of which is best reserved for Part II). The periaxial spirals can just be detected on some of them ; and on others, where they cannot be seen as lines wound round the shaft, their presence is made probable by the lateral processes which can be seen on their edges. And towards the ends of the chromosomes, wherever they stand clear, the sheath membrane can generally be made out as a fine line bridging over the tips of the processes. The sheath can indeed generally be seen round the elges of even highly-agghtinated clumps, figs. 32, 33, 34. In fig. 31 (Bombinator) these details can only just be glimpsed here and there, on account of the smaller size of the elements ; but induhitably exist there as described for fig. 30. We may conclude that at the height of the clump stage the chromosomes-though generally much shrunken, compresset, crumpled, and otherwise distorted-have more or less redained all their essential features.

This stage is of short duration, the chmp soon passing by a process of expansion (to be explained in Part, II) into the
telophase. This next stage will be most conreniently studied in the spermatogonia and oogonia of the Amphilia. For here, as the clump passes into the teloplase. it expands into a wide ring, on the surface of which the chromosomes are set on widely spaced meridians. figs. 43, 44, 45, 48, 49, 50, and others. Owing to this arrangement they show only a minimal amount of overlapping. and, standing out on a clear background, can be studied with sufficient accuracy.

In the earliest stages of this process of expansion (figs. 35 to 35) we find much the same state of things as in the denser chmp). The paired chromosome axes can be more clearly distingnished : periaxial spirals can be just detected on some of them, and on others their existence is placed beyond all reasonable doubt by the lateral processes visible on the edges of the axes. And the sheath can be made out on many of them (same figs.). In later stages such as figs. 39 to 47 , the demonstration of these details becomes more difficult, mainly on account of two complications which here ensue. One of these is the formation of trabeculae ('anastomoses ' of some authors) between the chromosomes. These trabeculae obscure the lateral processes, with which they are easily confused, and so deprive us of an important guide for the detection of the periaxial spirals. The other is, that as the chmp expands, the chromosomes clongate ; and as they elongate their duplicate axes t wine round one another, figs. 35, 39 to $47 .{ }^{1}$ This involves

[^5]a continual displacement of the direction of the axes, making it extremely difficult to follow them accurately for more than rery short distances, and thos making it next to impossible to distinguish the periaxial spirals rmming across them. Still, at this stage, it can be inferred with certainty that these exist at least to some extent ; for indubitable lateral processes can be made out in some places ; and the sheath can be ohserved with certainty in farourable places, as shown in figs. 39 to 45 (in some places of these, where not sufficiently evident in the drawings, I have marked it with a cross).

When the expansion of the clump has attained its greatest extent, we have the telophasic ring, figs. 48 to 51 , and others. The chromosome axes are here abont as distinct as before ; but the periaxial spirals, lateral processes, and sheath seem to be w a n ing. The spirals can no longer be seen as lines running across the shaft : and the lateral processes can only be distinguished from the interchromosomal trabeculae here and there. But this does not necessarily imply that they have diminished in number. For at this stage the chromosomes have elongated considerably ; and since by their elongation the periaxial spirals and their processes must be pulled away from one another, we naturally find far fewer processes than before on any given length of an axis. But this is probably not all that happens. The chromosome of the anaphase and early polar clump is a very tightly twisted cylinder ; and there is nothing forced in the supposition that the spirals on its swface, and their lateral processes, are mere effects of the torsion it has undergone. And it appears natural that as the axis elongates at the telophase, it should $u n t w i s t$; and that in consequence of this untwisting the spirals come to subside into the shaft, carrying their processes down with them. Not that the substance of the spirals and processes degenerates or dissolves ; but that it undergoes a change of configuration: as when I extend a finger, wrinkles start up on its surface ; and when I flex it these wrinkles are smoothed down. But be this as it may, it is certain that in the telophase the periaxial spirals and processes begin to wane ont of sight, till in the
interphase it is seldom possible ton detect erem a restige of them with certainty:

As to the sheath at this stage the appearances are similar. In the melens of fig. 47 (Bombinator) (which shows one half of a ring such as that of fig. 50). I am not able to see it, except (possibly) on the chromosome at the extreme left. In the melers of fig. 48, a later stage, also Bombinator , I have not beem able to detect it. In that of fig. 49 (Triton) I think I can see it in the two places marked with a cross, and glimpse it in one or two others. In that of fig. 50 (5 alamandra) I have been able to see it in a fragmentary way in half a dozen places, as markerl. In that of fig. 51 (Triton, follicle nucleus of testis) I have been able to detect it in only three places (alsn marked). It is certainly less abundantly evident in these nuclei than in the earlier stages. And this can hardly be accounted for by greater difficulties in the way of observation ; for the chromosomes are now more widely spaced than before, and observation of their edges should therefore be easier. Add to this that the sheath when detected can only be made out in a fragmentary way ; can only be followed for very short distances ; is less regular than in earlier stages, being frequently distinctly dilated ; and can in some places be seen distinctly to be ruptured (details which it is not possible to render satisfactorily in a drawing). It may be statet as certain that towards the end of the telophase the sheath has generally to a great extent disappeared. And this disappearance seems to be due to a process of real disintegration ending in destruction, rather than to a mere change of configuration or relation of parts. For in completely 'resting' nuclei, even if these are such as to offer erery facility for observation, not a trace of it can be detecterel.

The periaxial spirals and sleath thes lost to view at the telophase come into view again gradually at the next prophase. In the earliststages in which the spireme is recognizahle as boing indubitably such (figs. 24 and 25) it seems to consist merely of tortuous naked threads (often clearly double, same figs., and uspecially fig. 25). These may be united by inter-
chromosomal trabeculac, but show no ot her lateral processes nor sheath, though they may show in considerable abundane minute nodes or raricosities. And the appearances suggest. that these are nothing but norles of contraction and torsion which may well be the first risible stage of the formation of periasial spirals and processes. In more adranced stages of the spireme, such as that of fig. 26, lateral processes and a sheath can often be made out with certainty, though with extreme difficulty. At this time (when the loops of the chromosomes are still so closely crowder together that almost all the sheaths are in contact with their neighbours) the lateral processes are sometimes so abundant that when fairly well visible they give the image of a dense network spread over the whole of the gromen of the nucleus, as shown in fig. 26. Periaxial spirals cannot be marle out on the axes at this time ; but since we have found that lateral processes are signs of the existence of the spirals-being in fact only lateral expansions of these out wardswe must admit that by this time the spirals are in course of formation, if not completely formed, even when we cannot so much as glimpse them.

As the chromosomes contract, they become more widely spaced, and by the time they have contracted into the state known as the 'segmented' spireme the lateral processes and sheath have come into evidence as clearly as in the anaphase, figs. 27 and 28 . In fig. 27 the periaxial spirals cannot be made out, the moieties of the chromosomes being here especially thin (as I invariably find to be the case in endothelium nuclei). In fig. 28 they can just be glimpsed in some places. But not till we come to the chromosomes of the equatorial plate, figs. 19 to 23 , do we find the axis clearly differentiated into a shaft with regular spirals on its surface. In equatorial phates whose chromosomes have not entirely assumed the form which they show when definitively arranged on the spindle, the aspect of the axes is still rather that of a structureless though twisted thread than that of a shaft with spirals on it (fig. 19). In the entirely completed and regularized plate the spirals certainly exist throughout, see figs. 20 to 23 . It they do not
at his time slow with all the vigrom amd distinctness with which they shen at the amphase, this may be sufficiently accomed for by the greater difticulty of ohserving them in the closel? collocatad monties of the rquatorial chromosomes. But it may chually well he that they only atitain their complete developme in at, the anaphase. We find, then, that the periaxial spirals are only temporary formations. The assertion of BonHevid and Y ©jdoriky that they persist after the telophase as muments of a new ermeration of chromosomes is contraty to 1ha facti. For we hase fombl that the chromosomes of the late thophase are for the most part without periaxial spirals and shenth: and that that which persists and passes into the interphase is mothing hat the thens simplified a xes of the chromosomes. These, on passing into the interphase, frequently lecome corited into reery regular spinals. such as have been described and figured by many observers (for instance, B on n o ev ie for Ascaris and Allimm, Vejdorsky for Ascaris and other ohjects, Sehnoider for Salamandra, and myself for Paris (quadrifolia) ; hut these do not consist, of prriaxial spirals set free from the shaft of the axis, but of the cutire axis in a simplified state. The chromonema theory is a mare's nest.

We may now smm up. There are two types of chromosomes: one (hitherto only fomend in plants) which is alveolated from the prophase to the telophase ; and one (hitherto only fomen in ammals) which is not alveolated at those stages or any other. This last consists (at those stages) of a solid basophhilons axis, possessing a certain spiral seulpturing of its surface. which we have called the periaxial spiral, and enclosed in an acitophilous sheath. But this sheath is perhaps common to both types : and if the suggestion thrown ont in the note on p. 4 shombld prove comect the periaxial spiral would also be common to both. Then the only important difference bet ween the 1 wo would be that the plant chromosomes have an alveolated, i. e. more or less hollow, axis, whist the ammal chromosomes have an entirely solicl one.

Part II. Division.

(a) Historical.

It was made out by Flemming in 1880 that the chromosomes of the equatorial plate are double, that is, composed of two similar longitudinal halves, closely approximated. The parallelism and close approximation of these halves naturally suggested that they arise by a longitudinal splitting of a previonsly undivided mother chromosome; and this suggested inquiry as to the means by which the supposed splitting could be brought about.

In 1881 Pfitzner ${ }^{1}$ put forth a schema of this splitting which seemed plausible and met with general acceptance. According to this, the mother chromosomes are composed either of a single row of globular gramules of chromatin, of a diameter exactly equal to that of the chromosome and embediled in an achromatic matrix ; or of a double row of such granules, of only half the size of those of the single row. These double rows are sometimes very closely approximated, sometimes less so ; and finally separate from one another as daughter chromosomes. The 'splitting' of the mother chromosome would thus seem to be brought about by the binary division of each of its constituent ' granules '.

This theory won ready acceptance ; and the supposed ' granules ', under the names of 'Pfitzner's granules ', ' microsomes ', 'chromomeres ', 'chromioles', and the like, are still described and believed in and made the basis of much fanciful explanation.

According to my own very extended observations, this notion of the 'splitting' of chromosomes being brought about her the splitting of their component 'chromomeres' is baseless. F'or no such granules exist at any time. It is abundantly clear to me that all the appearances that have been described as

[^6]"Pfither's gramules . 'chromomeres . and the like, are, as alreal! (xplainmb, nothing but ill-sem and fanltily interpreted imatron of thalores alul fwists of the axis of the chromosomes (figs. 3 to $2: 3$ and many otherss of this paper shoukl make this anfliciently clarry). It therefore only remains to be seem whether anye other mode of division can be made out.

Tor sittle this point. the first step must be to make out at what stage chromosomes can first he seen to be double. According to Filemming ("Nene Beiträge zur Kemntniss der Zelle ", ii. in 'Arch. mikr. Anat.', xxxrii, 1891, pp. 737, 744, and 745) the supposed splitting takes place in the spireme stage. And this is apparmtly the view still taken by the great majority of cytologists.

I am not aware that any observer has asserted a division of chromosomes dming the interphase. A longitudinal splitting at the telophase has been asserted by several writers, and with especial insistence by Dehorne. This writer even maintains (in his " Recherches sur la division de la cellule ", in 'Arch. f. Zellforschung', vi, 1911, p. 613) that it may take place as far back as the anaphase. This is indubitably erroneons. For beyond all doubt at this stage the chromosomes show no hint of duplicity. But as regards the telophase I find that-in some cases at least-at that stage the chromosomes are certainly doubld-in a sense; and I acknowledge the usinential correctnest of D) ehornés clever figs. 7, 9, 10, 11, 12, and 1 is (his fig. 6 , which comresponds to my fig. 43, I think has been imperfectly mulerstood hy hime). But I find no trace of my evedence that this duplicity is hrought about by a longitudinalsplitting.

A division of the chromosomes at the telophase has also been maintamed ly. K. C. Schoreider. In his' Ledhbuch der verglaichendem Histologie', 1902. pl. 10, 118, 848, and 939, he states it as a probable inference. He suggests that at this stage the chromosemes segment transversely at the polar hends; and that the two moidtes thas formed grow past one amonher so as to become parallelly appoximated throughout the ir lemeths. I have duly insestigated this point, and find no
signs of such a processis. I need not enter into further details, as Schneider himself seems to have abandoned his supposition. For in a later work (his "Histologische Mittheilungen", iii, "Chromosomengenese ", in 'Festschr. f. R. Hertwig', i, 1910, pp. $218,219,221$) he maintains lis view that a division of the chromosomes probably takes place at the telophase (or anaphase), but now supposes it to be a longitudinal one. ${ }^{1}$

Of this also I find no evidence. But I do find evidence of another and simpler process by which the observed images of duplicity are brought about To the consideration of this we may now proceed.

(b) Descriptive.

We have already seen incitentally, in Part I, that in the Amphibia the chromosomes of the later telophase are double structures, that is, that they consist of two chromatic threads, longitudinally collocated and more or less entwined.

This is by no means peculiar to the Amphibia. In smaller chromosomes than theirs the images are more difficult ; and in much smaller ones it may be impossible to obtain satisfactory resolution. But enough can be made out to leave no doubt that it is a very widespread phenomenon. In the Mammalia I have found it fairly clear in Homo , fig. 54 . In some of the Insecta (notably the Orthoptera) it is as certain as in the Amphibia, see figs. $62,66,67$. I think we may take it as the invariable mule that in animals all the telophase chromosomes are thus doubled, that is, possess already the duplicity observed in the chromosomes of the prophase. This relieves ns from the necessity of looking for any process of splitting in the phases between the telophase and the prophase ; and it only remains for us to make out in what way the telophasic doubling is brought about.
${ }^{1}$ The reason he gives for this is a strange one. He admits (p. 2l8) that the danghter chromosomes of the metaphase only show one spiral; but thinks (without asserting it positively) that in the anaphase and telophase they contain two, because the coils they show are so closely set that they could hardly be the expression of a single spiral'. How about a reel of cotton?

Tho ascertain this we must return to the study of the earlier foltplatsis, or polal clump. Th the daughter-star of the alaphase (figs. 3. 4, j, 61) we harre a 100 se assemblage of (hromosomes, ratlially aranged in a ring. These contract into Short staves ; and as they contract the whole figure shrinks (figs. 29 to 34), so that the stares become closely hudeded together and come into contact hy their marerins. They grenerally seem to agglutimate there, and their out lines become hardly distinguishable, indeed rery often quite indistinguishable. The clump then appears (tigs. 30, 31, 33) as an almost homogreneous ribbed disk, with a central pore, generally obturated by a perforated membrane or wels formed (as shown by profile views) hy the confluent remains of the polar spindle fibres. The mutual contact or agghtutination of the chromosome stares takes place first in the region of the clump that is nearest to the pole, their more distal portions remaining longer free : so that at this stage we get the image of a compact ling with digitiform processes depending from it-the 'figures pectiniformes' of H ('nneg 1 y (figs. 32 and 34). In badly fixed cells the clumping results in a formless mass, in which the chromosomes seem to have become completely fused together. This state is shown in fig. 34 . But, as I gather from the study of my most farourably fixed specimens, this is an artefact ; and there is not at any time a real fusion of the chromosomes, but only intimate contact to the point of indistinctness, or possibly superticial aggretination. ${ }^{1}$ Firg. 33 seems to me to show the utmost degree of agghlatimation that should be taken to be normal ; and the real state of things to be fairly well represeruted by fig. 30 or 31.
('areful examination of the staves of the chump at this stare seems to show that they are always in reality double structures; for in farourable cases they show mmistakable indications of a longitudinal duplicity. In fig. 29 there are four stares, marked with a cross, which show this. In the lefthand one (near the top) the tip is distinctly bifid ; and this is

[^7] 1) a $1 \mathrm{me} \%$, ibid., xx.2, 1908, p. 450 and lig. 15, who have arrived at the same conclusion.
also the case with the one at the bottom. In the two right-hand ones the tips are distinctly double ; and by careful focusing it can be made out that each of these stares is composed of two longitudinal moieties, superposed and to a slight extent twisted round one another. And in three or four of the short dark staves of the imner tier there can be seen a light longitudinal dividing line (not sufficiently clear in the drawing).

In fig. 33 nearly one-half of the twenty-one staves drawn are seen to be notched at the periphery, and two of them show a longitudinal dividing line continning the notch inwards. In fig. 30 I find three cases similar to these, and in fig. 32 two. I have no doubt that with better fixation these muclei would have shown several more sucl cases. In the clump of fig. 31 I think I can detect three or four similar cases, though doubtfully.

The clump does not long remain in this state of dense agglomeration, but soon begins to expand into the telophasic ring. The manner of this expansion is as follows. Amongst the staves of the clump-but never on their outer surfacesthere appear certain hyaline globules which, growing, push the staves apart and so loosen the clump. In fig. 38 are shown two such globules, one to the right, and one to the left ; in fig. 35 three (on the left ; one very indistinct) ; in tig. 37 five ; in the nucleus of fig. 36 there are a dozen or so, of which only a portion of one (at the left) could be shown in the drawing, the rest being too much masked by the sheaths. In fig. 62 , to the right, are seen three; in fig. 67 two can just be glimpsed (at the left and middle). These globules are entirely hyaline and uncolourable. Their outlines are generally quite smooth. They are, as I think, oroid in shape, not spherical : they may show a circular outline, as in the left-hand ones of figs. 38 and 43 , and other places ; but that is the expression of a transserse section of them. I suspect that there is formed at first one of them for each chromosome. If that be the case it is a likely hypothesis that they consist of the clear contents of the sheathis of the chromosomes, expressed from them by the pressure of the clump. But it is difticult to ascertain the number formed, because they soon fuse with one another into a small number of large globules, see figs. 43, 41, 45.
'They ultinately all fusce apparently, into a single homogeneous ringe as shown in figs. 49, 50 , and others.

As soon ats these globules haree attained a certain size, figs. $43,44.45,49$. and less clearly yet still indubitably in figs. 36, 37, 35, the chromosomes, which in the clump appear as straight staves, how appear as more or less sharply eureed stares, set on the surface of the globules or ring, that is, outside them and not embedded in them, see particularly the profile views tigs. 43, 44, 45. Their outer surface is irregularly convex; but their immer surface is flattenced on to the curvature of the globule or ring. They areat the stage we are considering-of a length equal to about that of one of the limbs of the V-shaped chromosomes of the amaphase (sere figs. 3, 4, 17, 61). They do not form complete hoops round the ring, but ares that embrace about half a meridian of it. They thus show two ends, a polar end and an antipolar end. The polar ends, abutting on the lumen of the ring, are generally closely huddled together and sharply curved downwards, so that it is impossible to get clear images of them. But their antipolar ends are generally widely spaced (figs. 43, 44, 45), and here their wo component threads may frequently be seen, with certainty, to be widely divaricated, figs. 43 (in the middle.), 44, 45, which is not the case with the polar ends.

As soon ats the process of expansion hats set in, the images of the chump become less indistinct, and the chromosome staves appear ats shown in figs. $30,38,35,36,37$; that is, they are seen with certainty to contain or consist of the thin chronatic threads ruming in pairs, which in our study of the clump in Part I we recognized by their structure as shmenken chromosome axes, without discussing the fact of their collocation in pairs. The members of these pairs run very close together and in the main parallel to one another, as shown in figs. 30 to 35. Images such ats these may suggest, strongly, that during the (arlior stanes of the clump the chromosomes have contracted inten short staves, (ath of which hats undergone a longitudinal division ; sio that the threads would be the cleavage protucts of such a division. Now there is 110 sigh of any such division
taking place at any time ; but there is evidence that each of these threads represents anentire limb of the maphase V from which it is derived ; and that their parallelism in pairs is brought about by the folding together of the two limbs of that V . This eridence is contained in the following considerations.

In the daughter-star of the anaphase the chromosomes are indubitably Y-shaped, with equal limbs diverging to an angle of some 45 degrees, ${ }^{1}$ figs. 3 and 5 (the apparent shortness of some of the limbs in these figures, and the apparent hook shape, is due partly to unequal degrees of contraction, partly to foreshortening). But as the star passes into the clump stage this divergence becomes less pronounced, and in the completed clump we find no such open V's, but in their place a bundle of short straight staves, figs, 29 to 33 , each of which shows the two thin chromatic threads mentioned above. The observer's first impression naturally is that each of these staves represents one limb of a V, the relation of this one to the other being masked by the crowding of the elements. But consideration shows that this can hardly be. For the stares are only present in a far smaller number than the limbs of the anaphase V'sin the completed clump in only half that of the limbs. Talie for instance fig. 29 . This clump, a reer early one, contains, as I make it, thirty-two seeming staves, of which twenty-nine are shown in the drawing. Sow the anaphases of Salamandra atra, from which this is taken, have twenty-four V's, therefore forty-eight limbs. Manifestly, therefore, not all the stares of the clump can represent single limbs; but some of them must represent entire chromosomes. Let us suppose that sixteen of them are in this case ; then these will account for thirty-two limbs ; and the remaining siateen staves will represent sisteen single limbs, thus making up the required tale of fortyeight. Now take fig. 30, a completed chmp. I make out twenty stares shown fainly distinctly (not all drawn), and the manalysable portions of the clump may account for a rery

[^8]few mone so here we have about twenty-fons staves, representing fortyoright limbs. Or take fig. 33, also a completed clump. It shows twenty-one stares, and may contain a very few mere. Therefore here again about twenty-four stares for forty-epght original limls. Now take fig. 31, a nearly completed clump from Bombinator igneus. The diploid number of chromosomes in this species is sixteen, showing therefore thirty-two limbs at the anaphase. The clump contains twenty starts. Therefore not all of these can represent limbs of V"s; but twelve of them probably represent twelve whole V's, and the remaining cight represent single limbs of such : total, thirty-two.

It is therefore certain that in any polar clump some of the staves-and highly probable that in the completed clump all of the staves-must represent each of them t wo limbs of a V . And the conclusion follows, that each of those of the completed clump is in fact a V whose limbs have folded together. So that the observed duplicity of the staves is not due to the chromosomes having undergone a cleavage after having in some other way assumed the shape of staves, but to their consisting of the two limbs of an aphase V -or what remains of these. For the folding fully accounts for the duplicity.

In the Amphibia the postulated folding of the V's talies place as a rule only charing the formation of the polar clump, not before. But exceptionally it may take place during the carly amaphase. Fig. 4 is a case in point. In this anaphase the limbs of the V's are in several instances closed in to a distance of only about half a micron (as measured by the drumhead of the fineadjustment), and so accurately superposed on radii of the figure that it is only by the most careful attention that the elements call be sectu to consist of two superposed moieties.
lout this, which in the Amphibia seems to be the exception, is in some other animal groups the invariable rale. Fer instance, in the spermaterghia of the Acrictian Ocelipoda cot liwrin a (Areyoptera variegata) I invariably find the state of things repressented in fig. 61 . This is a satgital section of a mid-anaphase, the chromosomes being not yet half-way to the
pole. 'Ihey consist, all of them, of tightly-folded V's, appearing as short staves with the spindle-fibre insertion at the end. But they are certainly folded V's with the insertion at the apex: the two limbs can be made out with certainty at the tips of four of them ; and a longitudinal duplicity can be at least glimpsed in all of them. ${ }^{1}$ I find the same state of things exactly in Oedipoda germanica, Oc. coerulescens, Oe. (Mecostethus) parapleura, (romphocerus rufus, Stenobothrus morio, St. biguttulus, and some other species of S t e no b othrus which could not be determined with certainty. So that in all the Acrididae I have examined the folding takes place not later than the early anaphase. And as at this stage the images are not obscured by the crowding of the chromosomes which takes place in the polar clump, there can be no doubt about the folding actually occurring.

So also in the Locustidae. Fig. 64 shows an anaphase of a spermatogonium of Decticus verrucirorus. The chromosomes are here smaller than in the Acrididae, and appear for the most part as short rods with the spindle-insertion at the end. But it can be made out in farourable instances that they are in reality folded V's ; and where this cannot be done, the analogy with those of the Acrididae puts it out of doubt that they are in the same case. Similar images are afforded by Decticusgriseus, Locustariridissima, L. cantans, and Pterolepis aptera. In Gryllotalpa vulgaris and Gryllus campestris I find apparently the same state of things, the anaphase chromosomes (with the exception of the monosome in Gryllus) appearing as short rods inserted by one end on the spindle. These apparent rods are too small to be analysed with certainty ; but judging by the amalogy of those of the other Orthoptera mentioned there can be no doubt that they are in reatity

[^9]tightly-folded Vis. ${ }^{1}$ And this is also doubthess the case with the rery short thick chromosomes of the Hemipteron Pent at omia (C'arpucoris) nigricornis.

We find, then, that in the nuclei we have been studying the chromosomes become doubled at the telophase, or before, through a folding-in of their limbs. This brings those limbs into a state of parasyndesis or close juxtaposition throughout their length, so that little change (other than the clongation due to their growth during the interphase) is required in order to bring them into the state in which they are found at the commencement of the spireme stage. This is illustrated in tigs. 55 to 59 . But this process is perhaps not followed exactly in all muclei. I have evidence that the folding, or at all events the definitive parasyndesis, of the limbs may be deferred, and
${ }^{1}$ In the Orthoptera the folding takes place not only as early as the carly anaphase, but sometimes as early as the equatorial phase. In the equatorial figures shown in figs. 60 (Oedipoda cothurna) and 63 (Decticus verrueivorus) all the chromosomes are tightly folded into the stave shape. The same is the case in Oedipoda germaniea, Oe. coerulesecns, and Oe. (Mecostethus) parapleura. In fomphocerus rufus the majority of the chromosomes appear in the stave form; but there may be some open V's. In stenobothrus biguttulus I suspect that the equatorials have always exactly two large chromosomes of the open V shape, all the others being tightly folded into the stave shaje. It is perhaps not rash to conclude that all the cases of chromosomes deseribed by authors as straight rods with a terminal spindle insertion are in reality cases of tightly-folded V's with an apical spindle insertion.

Fig. 63 (1)ecticus verrueivorus) shows sixteen large autosomes, fourteen small ones, and a monosome, therefore thirty-one in all. 'This is as it shoukl be: for in this species 1 find in all unobjectionable images either sixtern large autosomes and fourteen small, or fifteen large and lifteen small, and a monosome; the differener resulting from the fact that it is sometimes difficult to decide whether a chromosome is an unusually small 'large' one or an unusually large 'small' one. Buehner ('Arch. Zellforsch.', iii. p. 342, and fig. 82 of Taf. xix) eorrectly gives the mumber ats thirty-one in all. Vojdořky (op. eit., lp, 33 and 44), notwithstanding that he had this description before him, insists that there are only twenty-three in all. Reference to his figs. 65 to 69 shows that he hate mistaken cutire ehromosomes tightly folded into the stave shatje, and fortuitursly approximated at their apices, for mere limbs of open V's.
take place only at the moment of the formation of the spireme, or erem at an alranced period of its erolution. In this case, the limbs pass through the interphase in a more or less widely divaricated state, which gives to the interphase a facies very dissimilar to that of the interphase of nuclei in which the parasyndesis has taken place at the telophase. A description of this is reserved for a future paper. But in either case the mechanism of the division of the chromosomes is the same in principle. There is no longitudinal splitting. The division is a transverse one, bronght about by the folding of the chromosomes at their middle, and their ultimate segmentation at the bend there formed. The moieties which separate at the metaphase are the t wo limbs of the chromosome thus folded, therefore metameric, not antimeric, moieties

EXPLANATION OF PLATES 1 and 2.

Illustrating Mr. Arthur Bolles Lee's paper on 'The Structure of certain Chromosomes, and the Mechanism of their Division '.

Magnification 1,500 diameters throughont.

Plate 1.

Fig. 1.-Anaphase of pollen grain of Paris quadrifolia. Chromosomes alveolated, with sheath.

Fig. 2.-Early interphase of pollen grain of P. quadrifolia. Chromosomes without sheath, not alveolated, elongated into spirals.

Fig. 3.-Triton alpestris. Anaphase of spermatogonium. The chromosomes as open V's, showing the chromatic axis and periaxial spirals and sheath.

Fig. 4.-The same, a somewhat later stage, showing the chromosomes folded into very narrow V's.

Fig. 万.-Bombinator ignens, spermatogonimm. Portion of anaphase, showing the ehromosome axes and periaxial spirals, but not the sheath.

Fig. 6.-Salamandra maenlosa. One limb of an anaphase chromosome, spermatogonium. Chromatic axis, periaxial spirals (very widely spaced). lateral processes, and sheath.

Fig. T.- Sala mandra atra, do.. do. Shows same details; also the terminal tag on the dome-shaped end of the axis.

Fig. S.-Salamandra maeulosa, ongonium. Anaphase chromosome, entire. Same details.

Fig. 9.-Do., epiderm. Anaphase chromosome, one limb. Same details.
Fig. 10.-Do., epidermal gland; anaphase ; one limb of a chromosome. Spiral with very wide pitch.

Fig. 11.-Do., kidney cell. Same details.
Fig. 12.-Do., cornea. Spirals mueh flattened on to axis.
Fig. 13.-Do., retina of larra, rod and cone layer. Details as last.
Fig. 14.-Triton alpestris, larva, pulmonary epithelium. Entire anaphase chromosome. Note the spiral very closely eoiled at tip of righthand limb, and not continned round the polar bend.

Fig. 15.-n, Tritonpalmatus, spermatogonium; b, Salamandra maculosa, spermatogonium ; c, do., epiderm. Transverse sections of anaphase spermatogonia. See text.

Fig. 16.-H o mo, pus corpuscle from ulcerated skin. Two ehromosomes from an equatorial division figure. Sheath and lateral processes shown, periaxial spirals invisible, though doubtless existent.

Fig. 17.- (iallus domosticus, embryonic eartilage. Portion of an anaphase. Periaxial spirals just visible, sheath strong.

Fig. 18. -Aneylus lacustris, buecal epithelium. Tangential section of anaphase. Spirals, lateral processes, and sheath just visible.

Fig. 19.-Salamandra maculosa, epiderm. Chromosome from a not completely regularized equatorial figure. Spirals indistinct, giving an impression of 'granules'.

Fig. 20.-Do., from a completed equatorial figure of a spermatogonium. Details as last.

Fig. 21.-Do., portion of equatorial chromosome of an oogonium. Details as last two figs.

Fig. 22.-1)o., renal epithelium. One limb of an equatorial chromosome. Spirals distinct on each of the two moieties.

Fig. 23.-Oedipoda cothurna. Equatorial chromosome of secondary spermatogonium. Details as for fig. 19, but sheath stronger.

Fig. 24.-Triton palmatus, spermatogonium. Spireme, early stage. Chromosomes double, no sheath or other detail.

Fig. 25.-Sialamandra maculosa, larva, opithelium. Spireme somewhat more advanced than last. Moieties of chromosomes varicose (dawn of periaxial spirals).

Fig. 26.-Do., pulmonary epithelium. Spireme, later stage. Moieties very varicose, with abundant lateral processes and sheath.

Fig. 27.-Do., pleural endothelium. 'Segmented' spireme. Moieties with large varicosities (Pfitzner's 'granules'), and lateral processes and sheath.

Fig. 28.-Triton palmatus, spermatogonium. Later spireme. Periaxial spirals can just be glimpsed.

Fig. 29.-Salamandra atra. Spermatogonium. End of anaphase. Chromosome V's folded into the stave form.

Fig. 30.-Triton palmatus. Spermatogonium. Polar clump. Chromosomes tightly folded, much contracted.

Fig. 31.-Bombinator igneus. Spermatogonium. Polar clump. As last.

Fig. 32.-Triton palmatus. Spermatogonium. Clump showing chromosomes coalesced. Wholly or in part an artefact.

Fig. 33.-Do., do., do. Clump, in polar view.
Fig. 34.-Triton alpestris. Do., do., do. Profile view.
Fig. 35. - Triton palmatus. Do. Clump expanding, early stage.

Fig. 36.-Do., do., do. Later stage.
Fig. 37.-Do., do., do. Later stage of expansion, clump passing into telophase.

Fig. 38.-Do., do., do. Same stage, profile view.
Fig. 39.-Salamandra maculosa. Oogonium. Same stage, or early telophase. Axes of limlss of chromosomes elosely entwined round one another.

Fig. 40.-Do., do., do. Somewhat later stage, ehromosomes elongating.
Fig. 41.-Bombinator ignens, spermatogonium. Clumpinstage of figs. 38 and 39.

Plate 2.

Fig. 42.-Salamandra maculosa, spermatogonium. Telophase, early, showing tclophasic ring in profile (section).

Fig. 43.-Triton palmatus. Do., do., do. Note the chromosomes flattened on to the outside of the hyaline globules, which are in course of fusing into a ring.

Fig. 44.-Do., do., do. Tangential section of ring. As last. Two large hyaline globules shown in the middle. Note the ends of the ehromosome axes showing divaricated at the antipolar ends.

Fig. 45.-Do., do. Profile view of a ring at a slightly later stage. Chromosome moieties looser ; chromosomes longer.

Fig. 46.-Salamandra maculosa. Renal epithelium. Telophasic ring, same stage as last, same details.

Fig. 47.-Bombinator igneus. Spermatogonium. Section of ring same stage as last, and same details.

Fig. 48.-Do., do. Later stage of telophasic ring, polar view.
Fig. 49.-Triton palmatus. Polymorph spermatogonium. Midtelophase, ring beginning to elose. Chromosomes clongated,

Fig. in.-Salamandra maculosa, ongonium (primary). Telophasic ring. about same stage as last, chromosomes more elongated and taking on an erratic course.

Fig. it.-Triton palmatus. Large endothelium nuclens from follicle of testis. Late telophase, ring almost closed. Nucleus very flat; almost all the chromosomes drawn ; chromosome axes distinetly doubled and entwined.

Fig. $52 .-D o .$, do., a smaller nuclens, somewhat later stage.
Fig. $23 .-B o m b i n a t o r$ igneus. Endothelium nueleus, entire, testieulir peritoncum. Polar view (not a section) of telophase of same stage as last. All the chromosomes have been drawn, though not throughout all their length.

Fig. пt.- H o m o. Endothelium of vein of cutis. Section of telophase, about the stage of fig. 51 or 53 .

Fig. 55.-Triton palmatus. Spermatogonium, early interphase.
Fig. 56.-Do. Late interphase, or dawn of spireme.
Fig. 57.-Do., do. Early spireme. Karyoplasm browned by osminm.
Fig. 58.-Bombinator igneus. Peritoneal endothchium. Early rest stage.

Fig. 59.-Do., do. Later rest stage.
Fig. 60.-Oedipoda eothurna. Spermatogonium. One half of an equatorial figure. Chromosomes all of them as tightly-folded V's.

Fig. 61.-Do., do. Sagittal section of anaphase. Chromosomes so tightly folded that they appear as stout curved staves.

Fig. 62.-Do., do. Early telophase, tangential section of ring. Shows three hyaline globules (to the right).

Fig. 63.-Decticus verrucivorus. Spermatogonium. Equa. torial figure. All the chromosomes drawn. All are tightly folded into the stave shape; m is the monosome.

Fig. 64.-Do., do, anaphase, polar view. Chromosomes folded into the shape of wedges; m, monosome.

Fig. 65.-Do., do. End of anaphase. Chromosomes as before.
Fig. 66.-Do. Primary spermatogonium. Mid-telophase • m, the monosome. Some of the chromosomes seem to have their moieties divaricated at both ends, as if a transverse segmentation had taken place at the polar ends.

Fig. 67.-Do. Nucleus of connective tissue enclosing cyst of testis. Early telophase.

[^0]: ${ }^{1}$ The ehromomere theory seems to have been given up even by F1 cm ming, who at one time accepted it. For in his paper, " Neme Beiträge zur Kemntniss der Zelle ', II. Th. ('Areh. mikr. Anat.', xxxvii, 1891), whilst dis:eussing the division of ehromosomes, no mention is made of the gramules. which he had formerly taken to be active agents of the division ; and his figures no longer show any such granules, but in many pacest show instear more than hints of the langes of a twisterl thread.

[^1]: ${ }^{1}$ This is a drawing of the anaphase shown in fig. 6 of my paper, amended hey the addition of the sheath and lateral processes round the axis of the rhronosomes, whith harl escaperl me when the original drawing was marle. I hink it quite likely that there may be also a very fine periaxial spiral, in correspendenee with the lateral processes, romed the axis of the ehromo-

[^2]: ${ }^{1}$ For the objects from which these figs, are taken, see the Explanation

[^3]: ${ }^{1}$ Fior haisppiral to be demomstrated it is imperative that the chromosome low onot uverstamed. for if it is the axis will appear as dark ats the spital, and the: rimal will mot be seen. I ejdovaky's figures grossly exaggerate the distinetness of the spital at the best of times.

[^4]: ${ }^{1}$ The a poneurosis of this membrane on the sheath can sometimes be seen as a spiral line romming along the sheath. I have abstained from drawing it on account of the difficulty of showing it clearly.

[^5]: ${ }^{1}$ This gives us the key to Kowalski's assertion (op, eit.) that the chromosomes of the salamander larva are at eertain periods alveolated. Thirteen of his figures purport to show the alveoles in question. Eight of these are of telophases. On comparing them with my figs. 39 to 51 it becomes evident at onee that K owalski has interpreted images of doubled and entwined chromosome axes as borders of alveoles-which is very natural, for a thus doubled chromosome easily gives the impression of an alveolated cylinder if you are not able to obtain a sufficiently sharp focusing of its entwined axes. The remaining five of Kowalski 's figures of 'alveolated' chromosomes are of spiremes, such as my figs 25 to 27 , and manifestly only show that the chromosomes he had before him were double, transverse trabeculae uniting their two moieties being taken for transverse walls of axial eavities in an undivided eylinder or riband.

[^6]: 1" Ü̉ber den feineren Bau der bei der Zelltheilung auftretenden fadenförmigen Differenzirungen des Zellkerns '", in 'Morpholog. Jahrbuch ', vii, p. 289-a mueh quoted but rather wretched performance.

[^7]: ${ }^{1}$ ('f. Janssens. ‘」at Collule', xix. 2, 1901, p, s6, and Janssens et

[^8]: ${ }^{1}$ This for the maclei of the Amphibia. As we shall sec, it is not the case for those of all grouls of animals.

[^9]: ${ }^{1}$ The drawings figs. 12 and 13 (Dissosteira carolina). and 18 (Steiroxys), of the paper of Davis "Spermatogenesis in Acrididae", in ‘Bull. Mus. Comp. Zool. Harvard', with the interpretations given, 11]. 69, 70, 71 of the text, should, as 1 conceive, be corrected in the sense indieated above.

